HYDROLOGICAL REGIME IMPACTS ON MACROPHYTE COMMUNITIES OF STORMWATER TREATMENT WETLANDS

Li Zhang and William J. Mitsch Everglades Wetland Research Park Florida Gulf Coast University Naples, Florida, USA

INTRODUCTION

Created Wetlands (CWS):

- provide a range of ecosystem services and also habitats for a range of biota, aquatic plants and animals (Greenway 2017; Mitsch and Gosselink, 2015; Mitsch et al, 2014 and 2012; Costanza et al., 1997)
- remove 10-90% N and P (Griffiths and Mitsch, 2017; Adyel et al., 2017; Merrimana et al., 2016)
- reduce possible flooding and mass loads (Greenway 2017; Mitsch and Gosselink, 2015; Mitsch et al, 2014 and 2012; etc.)

INTRODUCTION

Also for Stormwater Treatment Wetlands:

- inundation depth influences shoot density, photosynthesis and nutrients of plant community dominated by *Typha* spp. (Chen et al. 2014)
- low DO and macrophyte senescence were found in dry season (Adyel et al. 2017 and Greenway 2017)
- plant community health is a critical factor for the sustainable performance (Chen et al. 2014)

Ecological Engineering 80 (2015) 8-19

Fig. 1. Study area of the CSW: (i) map of Sweden showing the city of Växjö, (ii) the contributing catchment borders (solid line), and (iii) aerial view of the CSW with locations of the monitoring stations (P1, P2, and P3), Photo from Växjö Municipality.

Fig. 1. Jack Smith Creek CSW contributing watershed and installed rain gauge locations in New Bern, North Carolina, USA.

Fig. 2. Schematic of Jack Smith Creek constructed stormwater wetland.

M. Greenway / Journal of Cleaner Production 163 (2017) S91-S100

Fig. 2. Aerial view of the Bridgwater Creek constructed wetland system: Bowie's Flat Wetland showing sampling sites (P1out:Pond1-sediment basin; P2: Pond2; P3:Pond3; P4:Pond4; P5:Pond5; P6out:Pond6). The white arrows depict base flow and stormwater flow during 'average rainfall' events. The red arrows depict stormwater flow during 'high intensity rainfall' events. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Olentangy River Wetland Research Park: The Ohio State University, Columbus, Ohio

Water elevations above sea level (hydroperiods) of the experimental wetlands at the Olentangy River Wetland Research Park, central Ohio, for 1994 through 2012

W.J. Mitsch et al. / Ecological Engineering 72 (2014) 11-24

Mitsch et al. Ecological Engineering 72 (2014) 11–24

Community diversity index (CDI) of vegetation in the planted and naturally colonizing experimental wetlands, 1994–2013

Employing ecosystem models and geographic information systems (GIS) to investigate the response of changing marsh edge on historical biomass of estuarine nekton in Barataria Bay, Louisiana, USA

Fig. 2. Barataria Bay, LA, USA, bordered on the east by the Mississippi River and on the west by Bayou LaFourche (Couvillion et al., 2011).

Fig. 5. Marsh edge Ecospace initialization map. Warm colors indicate higher values of marsh edge in the cell. Gray cells indicate inactive (land) cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Salinity Ecospace initialization map. Warm colors indicate higher values of salinity in the cell. Gray cells indicate inactive (land) cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

OBJECTIVE

- to determine macrophyte communities during dry and wet seasons
- to investigate distributions from macrophyte communities during hydro-periods
- to understand hydrologic process for stormwater treatment wetlands in the subtropics

HYPOTHESES

- Community diversity index of the macrophyte communities may be different between dry and wet seasons for stormwater treatment wetlands;
- if the hydrology plays a key role for dynamics of the vegetation communities for stormwater treatment wetlands in subtropics

MATERIALS AND METHODS

Study Site

ry season (aerial photo in March 2017)

wet season (aerial photo in Oct 2017)

	Scientific Name	Common Name
Planted	Cladium jamaicense	Saw-grass
	Eleocharis cellulosa	Spikerush
	Juncus effusus	Softrush
	Nuphar lutea	Spatterdock
	Nymphaea odorata	White water-lily
	Peltandra virginica	Arrow-arum
	Pontederia cordata	Pickcrel weed
	Sagittarria lancifolia	Duck potato
	Thalia geniculata	Fireflag

METHODS

- Defining plant communities by the aerial photos and ArcGIS 10.4
- Defining community diversity index by (Mitsch et al., 2012): CDI

$$CDI = -\sum_{i=1}^{n} p_i ln p_i$$

where *n*: total number of plant community;

 p_i : proportion of n made up of the *i*th dominant community

• Modelling potential diversity index by geostatistical analysis P(x,y,z) = f(p, w, CDI)

where *p: position (x, y, z)*; w: water level (cm); *CDI*: community diversity index

spatial modelling process for CDI and potential CDI

RESULTS

Monthly air temperature (°C, Max. Min.) and monthly precipitation (cm) and during 2007 -2017

water level (1-hr interval, NGVD cm) reading in 2017 at the outflow from wetland real-time monitoring station in Freedom park

Percentile

water level exceedance curves during the dry and wet seasons at the outflow of wetland 3

percent coverage of plant communities in the three treatment wetlands (W1, W2, W3) at Freedom Park for a) dry season (March 2017) and b) wet season (October 20, 2017)

Scientific Name	Common Name	W1	W2	W3
		%	of coveraș	ge
Cladium jamaicense	sawgrass	3.0	7.3	3.8
Eleocharis cellulosa	spikerush	1.7		
Mikania scandens	Climbing hempvine		22.9	
Mikania scanaens/Lieocnaris	Climbing hempvine/spikerush	19.7		31.3
Mikánia scanaens/Ponteaeria	Cumping nemptine/Pickerei		10.7	29.8
Nuphar lutea	Spatterdock	2.0	1.2	
Nymphaea odorata	White water-lily		13.8	11.4
Pontederia cordata	Pickcrel weed			0 .7
Thalia geniculata	Fireflag			
	Гиспад	5.4	8.8	
Thalia geniculata /Mikania scandens				
	Fireflag/Climbing hempvine	4.4	0.5	1.5
Thalia geniculata /Pontederia cordata				
	Fireflag/Pickerel weed	2.3		
Typha spp.	Typha spp		7.0	2.8
Dead Typha sop	Dead Typha spp		6.6	2.0
Doud Typing Spp.	Dout Typin opp.		0.0	
Panicum repens	Torpedo grass	14.5		
Mikania scandens/Panicum repens	Climbing hempvine/Torpedo grass	9.1		
Salix caroliniana	Carolina willow	4.9	0.5	8.4
% of open water		33.0	20.7	10.2
% of total vegatation		67.0	79.3	89.8

* 17 plant communities for dry season and 29 plant communities for wet season

Scientific Name	Common Name	W1	W2	W3
		%	of cover a	ge
Cladium jamaicense	sawgrass	3.4	7.7	4.5
Eleocharis cellulosa	spikerush	2.5	5.0	0.9
Eleocharis cellulosa/Pontederia corda	ta spikerush/Pickerel weed			5.5
Eleocharis cellulosa/Thalia	snikerush/Fireflag/Pickerel weed			
geniculata/Pontederia cordata	spikerusi/1 iteriag/1 iekerer weed			2.3
Ludwigia repens/Panicum repens	Red Ludwigia /Torpedo grasses	0.9		
Mikania scandens Mikania scanaens/Ereocnaris	Climbing hempvine Climbing hempvine/spikerush	0.3	0.5	
cellulosa/Polygonum	/Wild water-pepper		2.4	
lourkantirscaidens/romeaeria cordata	Cumoing nempvine/Pickerei weed	5.3		
Mikania scandens/Sagiiiarria	Climbing hempyine/Duck potato			1.4
Iancijolia Mikavia so modove/Sacittania	Climbing hempying/Duck potato			1.4
Imikania scandens/Sagiiiarria	chinoling hempy me/Duck		6.0	
Number lutea	Spatterdock	0.4	2.2	2.0
Nuphar tulea	Spatieruock	0.4	5.5	5.0
nymphaea odorata	white water-hily		8.1	7.1
Polygonum hydropiperoides Polygonum	Wild water-pepper	0.3		
hydropiperoides/Sagittarria	Wild water-pepper/Duck			
lancifolia/Juncus effusus	potato/Softrush			6.3
Polygonum				
hydropiperoides/Sagittarria				
lancifolia/Ludwigia repens/Juncus	Wild water-pepper/Duck			
effusus	potato/Red Ludwigia/Softrush			10.5
Pontederia cordata	Pickcrel weed	2.9		
Pontederia cordata/Panicum repens	Pickcrel weed/Torpedo grasses	14.3		
Sagittarria lancifolia/Juncus effusus	Duck potato/Softrush			3.4
Scirpus americanus	Bulrush	1.6		
Thalia geniculata	Fireflag	5.2	22.6	1.6
Thalia geniculata /Mikania scandens				
5	Fireflag/climbing hempvine	3.4		
Thalia geniculata /Pontederia	e			
cordata/Mikania scandens	Fireflag/Pickerel weed/climbing			
	hempvine	2.5		
Thalia geniculata/Panicum repens	Fireflag/Torpedo grasses	3.6		
C	0 1 0	-		
Typha spp.	Typha spp.		9.7	1.3
Dead Typha spp.	Dead Typha spp.		0.5	
Panicum repens	Torpedo grass	2.0	1.2	0.3
Panicum repens/Numbar	Torpedo	2.0		0.0
lutea/Pontederia cordata	grass/Spatterdock/Pickcrel	0.6		
Mikania scandens/Panicum repens	Climbing hempyine/Tomedo grass	17		2.6
Salir caroliniana	Carolina willow	0 1	0.8	20.0
Torrodium ascendens	pond Cypross	0.7	U.0	20.0
ascenuens	pond Cypress	0.7		
% of open water		39.5	32.3	29.5
0/ of total vacatation		60 F	677	70 F

b)

LEGEND

Thalia geniculata/Pontederia cordata

Nymphaea odorata

Panicum repens

Panicum repens/Mikania scandens

Salix caroliniana

Taxodium ascendens

Boardwalk

LEGEND

Scirpus americanus
Mikania scandens/Sagittarria lancifolia/Polygonum hvdropiperoides
Mikania scandens/Eleocharis cellulosa/Polygonum hvdropiperoides
Panicum repens/Nuphar lutea
Ludwigia repens/Panicum repens
Mikania scandens/Pontederia cordata
Thalia geniculata/Panicum repens
Thalia geniculata/Pontederia cordata/Mikania scandens
Panicum repens/Pontederia cordata
Panicum repens/Mikania scandens
Polygonum hydropiperoides
Eleocharis cellulosa/Pontederia cordata
Thalia geniculata/Pontederia cordata/Mikania scandens
Polygonum hvdropiperoides/Sagittarria lancifolia/Juncus effusus
Sagittarria lancifolia/Juncus effusus
Polygonum hydropiperoides/Sagittarria lancifolia/Ludwigia repens/Juncus effusus
Mikania scandens/Sagittarria lancifolia

CDI in three stormwater treatment wetlands (W1, W2, W3) at Freedom Park for dry season (March 2017) and wet season (October 20, 2017)

WETLAND	DRY	WET
W1	1.97	2.18
W2	2.05	1.99
W3	1.74	2.22

CDI for dry and wet seasons in the wetlands

potential water level exceedance curves during the dry season at the outflow of wetland 3

WETLAND 1

WETLAND 2

OUTFLOW

WETLAND 3

INFLOW

CONCLUSIONS

- provide significantly seasonal patterns of macrophyte communities for understanding hydro-periods in subtropics
- become a reference for stormwater treatment wetlands which will benefit to the scientific, agency, and educational communities
- suggest to have a possibility to develop a long-term vegetation study for better understanding ecosystem dynamics and functions of stormwater treatment wetlands in subtropical Southwest Florida

ACKNOWLEDGMENTS

- Lauren Griffiths, Taylor Nesbit, Linfeng Li for assisting ground truth surveys Everglades Wetland Research Park, Florida Gulf **Coast University**
- Collier County, FL

REFERENCES

Adyel, T.M., M.R. Hipsey, C.E. Oldham. 2017. Temporal dynamics of stormwater nutrient attenuation of an urban constructed wetland experiencing summer low flows and macrophyte senescence. Ecological Engineering 102: 641–661

Al-Rubaei, A.M., M. Engströmc, M. Viklandera, G. Bleckena. 2016. Long-term hydraulic and treatment performance of a 19-year old constructed stormwater wetland—Finally maturated or in need of maintenance? Ecological Engineering 95:73–82.

Becka, M.W., C.M. Tomcko, R.D. Valley, D.F. Staples. 2014. Analysis of macrophyte indicator variation as a function of sampling, temporal, and stressor effects. Ecological Indicators 46:323–335.

Chen, H. and k. Vaughan. 2014. Influence of Inundation Depth on Typha domingensis and its Implication for Phosphorus Removal in the Everglades Stormwater Treatment Area. Wetlands 325–334

Chen, H., M.F. Zamorano, and D. Ivanoff. 2013. Effect of deep flooding on nutrients and non-structural carbohydrates of mature Typha domingensis and its post-flooding recovery. Ecological Engineering 53: 267–274.

Costanza, R., R. d'Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O'Neill, J. Paruelo, R.G. Raskin, P.Sutton etc, 1997. The value of the world's ecosystem services and natural capital. Nature 387, pages 253–260

REFERENCES

Greenway, M. 2017. Stormwater wetlands for the enhancement of environmental ecosystem services: case studies for two retrofit wetlands in Brisbane, Australia. Cleaner Production 163: 91–100

Griffiths, L.N. and W.J. Mitsch. 2017. Removal of nutrients from urban stormwater runoff by storm-pulsed and seasonally pulsed created wetlands in the subtropics. Ecological Engineering 108: 414–424

Mitsch, W.J. 2014. When will ecologists learn engineering and engineers learn ecology? Ecological Engineering 65: 9–14.

Mitsch, W.J. and J.G. Gosselink. 2015. Wetlands 5th edition John Wiley & Sons, Inc.

Mitsch, W.J, L. Zhang, K. C. Stefanik, A. M. Nahlik, C. J. Anderson, B. Bernal, and K. Song. 2012.. Creating wetlands: A 15-year study of primary succession, water quality changes, and self-design. BioScience 62: 237–250

Mitsch, W.J., L. Zhang, E. Waletzko, and B. Bernal. 2014. Validation of the ecosystem services of created wetlands: Two decades of plant succession, nutrient retention, and carbon sequestration in experimental riverine marshes. Ecological Engineering 72: 11–24.

Merrimana, L.S., W.F Hunta, K.L Bass 2016. Development/ripening of ecosystems services in the first two growing seasons of a regional-scale constructed stormwater wetland on the coast of North Carolina. Ecological Engineering 94: 393–405

THANK YOU!

